Multi-Group Covariance
Estimation with applications in
‘Omics

Alexander Franks

Department of Statistics and Applied Probability
UC SANTA BARBARA



Introduction

* A key challenge in quantitative biology is identifying the relevant and irrelevant
sources of variation

* Today: novel methodology for inferring covariance matrices in multiple
subpopulations

* Covariance matrices can be useful for
* Hypothesis-free and hypothesis-driven analyses
 Variation across dimensions (e.g. subject, experimental condition)
* Measurement error

e Case study on the metabolomics of neurodegenerative disease



Neurodegenerative Disease

e Number of adult cases is forecast to reach 100 million worldwide in the
next 35 years

* The majority of cases lack simple Mendelian genetic causes.
* How do age, environment, and polygenic variation contribute to risk?

* Recent work suggests that the metabolome can provide a powerful tool
to help us identify the mechanisms that underlie neuropathology.



Metabolomics

Genomics
 Metabolites are the small DNA

molecules involved in metabolism _ _
Transcriptomics

RNA
* Include amino acids, vitamins, _
sugars, drugs, etc. Proteins Proteomics
* The metabolome is the complete Biochemical, Metabolomics

set of metabolites in a sample
Biological

Phenotype

By Ycyc0927 - Own work, CC BY-SA 4.0, 3
https://commons.wikimedia.org/w/index.php?curid=68544125



Metabolomics of Neurodegenerative Disease

* Links to mitochondrial dysfunction caused by the deleterious effects
from oxidative stress and chronic inflammation

* AD and PD are comorbid with abnormal glucose metabolism and insulin
resistance

* Initial studies suggest the possibility for predictive biomarkers

* Apolipoprotein E (ApoE) is a class of proteins involved in the
metabolism of fats and is the largest known genetic risk factor for AD



Questions of Interests

Alzheimer’s
* Can we identify biomarkers for Alzheimer’s?
What can we learn about AD mechanisms? (AD vs CO)
Does ApoE status correlated with changes in the metabolome?

Parkinson’s

* Can we identify biomarkers for Parkinson’s?
What can we learn about PD mechanisms? (PD vs CO)

Aging

How does the metabolome change as we age (controls only)



Data

* Cerebrospinal fluid samples (CSF) from 198 individuals.
* 57 Alzheimer’s disease (AD), 56 Parkinson’s disease (PD), 85 controls
* For controls, have subjects from all ages

* Age, Sex, ApoE status



Data

* Mass Spectrometry-Based Metabolomics
* Northwest Metabolomics Research Center (NW-MRC)
* Targeted, approximately 100 features (ids known)
e Untargeted, approximately 8000 features (ids unknown)

* Lipidomics
* 1000 lipids

* Large p, small n problem
* Only 200 observations of high-dimensional data



Model Building

e X = (disease status, age, sex...)
* Relatively few features

* Y = (Fructose, DOPA, Creatinine, ...)
* Thousands of features

* Predict X given Y?
* Given a metabolite measurements, does the subject have Alzheimer’s?

* Predict Y given X?
* Given disease status, what can we say about the metabolome?



Predict disease status given metabolites

e Common framing in most machine learning problems

* Use many features to classify (typically) into small number of categories

* If classifying disease status is the primary objective this is reasonable

* Don’t need to model the complex interactions in the metabolome



Model the metabolome given phenotype

* Interested in mechanisms

* How and why is the metabolome different in ND subjects

* More plausible causal direction?

* Consistent with a the notion that a “disease causes symptoms”

* Measurement error and missing data in metabolite abundances



Statistical Challenges
* |[dentify mean level differences (useful for identifying biomarkers)

* This talk: focus on inferring covariance matrices across groups
e Relevant for learning about mechanisms

* Approx. 200 samples to learn about thousands of features!
* Number of correlations on the order of 8000 squared (untargeted)

* Need significant regularization and/or correction for multiple comparisons



Why Covariance Estimation?

Mean level differences are often small relative to sample variability

Covariance estimation can improve estimates of mean level differences

Correlations are indicative of functional groups in the metabolome

Correlations between metabolites are driven by unobserved variables

* Disease progression or severity

* Genetics

* Important unmeasured molecules (e.g. metabolic enzymes)
* Diet / extrinsic factors
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Metabolite A

Non-Case -
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P-value: 0.20
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Principal Component Analysis

PCA one of the most common
dimension reduction techniques

Latent factors explain data

Run single PCA for all data

Often used identify mean differences

Unsupervised learning
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Multi-group PCA

* Group by phenotype
* Do correlations differ by group?

* Infer different PCs for different groups

* Shared subspace models
e Large p, smalln

* Share information across groups
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|[dentifying Relevant Dimensions of Variability

* Find a subspace of variability that is invariant to changes in X
* “Nuisance variability”

* Find the smallest subspace of variability that not invariant to X
* Find all of the variation in Y that changes with X

* Requires inference for a subspace

e Characterizes differences in mean and covariances in metabolites for different
phenotypes



Shared Subspace Assumption

Data from similar sources often share similar structure.
e Effective dimensionality related to number of regulatory modules
e Most structure is common across groups

e Suggests that differences between groups are on a lower dimensional
shared subspace



A Shared Subspace Model

Assumption: Differences between groups are on a shared subspace.

0

3 -2 -

Projection in R? Subspace projection Orthogonal projection
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A Shared Subspace Model

Data from group k is multivariate normal:

with covariance
Sk =V VT +oil

 VV isap xsorthogonal matrix
« span(V) corresponds to the s-dimensional shared subspace of
* W, + o071 are the rank s covariance matrices of projected data R”



A Shared Subspace Model

-4 2 0 2 4 3 2 1 0 1

Projection in R? Y.V Y.V,

e span(V ) is represented by the gray plane with s = 2
* Differences in V. and U reflected in the span(V)
* No differences between groups on span(V/} )
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A Shared Subspace Model

* Find the “best” shared subspace of fixed dimension s

* Infer heterogeneity of the projected covariance matrices, W .
* Quantify uncertainty about differences in covariances

 Full Bayesian inference is hard
* Vis high dimensional
* Orthogonality constraints means sampling on a manifold



Shared Subspace Objective Function

0 (V, U, 0%) Z“‘(( vVt — V(\Ifk+a§1)‘1vT> Sk/z)

* Maximize over V' € V), ¢ (Stiefel manifold)

. VVT e Uy s is called the Grassmanian manifold

For comparison, the PCA objective is E(V) — tr(VTSV)



Empirical Bayes Inference
0(V, U, 0%) Ztr (( VVE —V (0 +a§1)‘1VT) Sk/2>
* “Integrate out” W, and Uk to maximize marginal log-likelihood, /(1)

* Expectation Maximization algorithm to estimate V

* Bayesian inference for \I!k given the inferred subspace V.



EM Inference in the Shared Subspace

€(V, ¥y, 07) ztr ((—V\VT V(0 + azl)‘lvﬂ“) Sk/z)

* E-step:
» 5 -1 T !
M, =F [(\Ilk + Uk/) |V(t—1)} = Nk (‘/(t—l)sk‘/(t—l))

1 ng(p—s
=L [p’v(t—n] — ad )
: tr | (1= Vi Vid_y) ) S|

* M-step:

Vi = arg maXZtr V/\/ltVT + TtVVT) Sk/2)
vVev,



Inference in the Shared Subspace Model

e Optimization on the Stiefel Manifold
 Computational complexity dominated by s, not p (Wen and Yin, 2013)
 Efficient for 10k+ features if subspace dimension when s is moderate

* Implemented in the R package rstiefel (Hoff and Franks)

* Bayesian inference for the projected data covariance matrices

* Low dimensional and tractable, facilitates uncertainty quantification



Analysis of Metabolomics Data

* Batch effects and drift can be large and obscure signals
e Samples prepped in 7 batches of about 30 subjects each
* At the very least, randomize the samples

* Can do better: explicitly maximize balance of features across batches
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Age

Randomized

80 1

60 1

Age

40 1

20 1
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Correcting for drift in metabolites abundances
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Analysis of Metabolomic Data

e Cerebrospinal fluid samples (CSF) from 198 individuals. Samples from
e 57 Alzheimer’s disease (AD)
e 56 Parkinson’s disease (PD)
» 85 controls split by age (young (CY), middle age (CM) and old age (CO))

e De-trend drift using non-parametric regression (boosted trees)
* Fit shared subspace model, explore differences in correlations

Can we detect heterogeneity across correlation matrices?



etabolite Correlations Change with Age
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Posterior Uncertainty
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etabolite Correlations Change with Age
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Metabolite Correlations in Parkinson's
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Metabolite Correlations in Parkinson’s
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Multivariate Analysis of ApoE

A 0 1 2



Next Steps

* Pathway analysis and interpretation
* Enrichment
* Network models (de novo reconstruction)

* Improved metabolite identification

* Robust inference
* Extend methodology to heavy-tailed distributions
* Multivariate t or laplace distributions



Some Remarks

* Papers

e Shared Subspace Models for Multi-Group Covariance Estimation
https://arxiv.org/abs/1607.03045

* Software
* https://github.com/afranks86/shared-subspace
* rstiefel: R package for optimization on the Stiefel manifold (w/ Peter Hoff)
* mgCov: Forthcoming R package multi-group covariance
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Metabolite Correlations in Alzhelrér’s

600 -

400 -

200 -

-1 0 1
angle, acos( UIV1 )

0.3

02

0.1

[4-Hydroxybenzoic acid1 J

\
[ 4-Hydroxybenzoic acid1 ]
P AN
1,2-Dipalmitoyl-sn-glycerol1 | [ ATP3
( 2-Chioro-4 6-diamino-1,3 5-triaz. J'pa oy SN-gyeers ] (

X

Isovalerylglycine2

2-Chloro-4,6-diamino-1,3,5-triazine5 ATP1

ADP2

4- Th|o-UTP1 \
[ D2-phosphoglyceric acid4

(-)/

Nicotinuric acid4

6-Cholenic acid-3p-o0l2
Epinephrine1

Nicotinuric acid2
Nicotinuric acid1
N|cot|nur|c acid4

1,2- D|p al

YS-ChoIenlc acid-3B-o0l2 ]

Methionine1

Epinephrine9




Dimension 2
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types)

factor(Type, levels

Anthranilic acid Aspartic acid Carnitine Decanoylcarnitine
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CM
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