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Multi-Treatment Inference

* Goal: assess the causal effect of multiple treatments applied
simultaneously in an observational context

 Genome Wide Association Studies (GWAS)
 What is the effect of an actor on movie revenue

* Can possibly leverage correlation between treatments to control for
potential unmeasured confounders.

 Many concurrent estimands (e.g. effect of each gene)

* Renewed interest in causal community due to Wang and Blei, 2019.



Multi-Treatment Inference: Setup

e Qutcomes Y (scalar)

* Treatments T (k-vector)

* Unmeasured confounders U (m-vector)
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Assumptions

Assumption 1: Latent ignorability
U blocks all backdoor paths between T and Y.

Assumption 2: Positivity
f(T=t|U=u)>0 for all u.

Assumptionm 3: SUTVA

There are no hidden versions of the treatments and there is no interference
between units.




“The Deconfounder” Approach
(Wang and Blei, 2019)

* Fit a factor model to infer substitute

confounders:
U = E[U|T]

* “Correct for” bias by including proxy

confounder to debias treatment effect
estimates:

Y ~U+T

* Assume U is pinpointed by T as k goes
to infinity



Some problems with “The Deconfounder”

Lack of general nonparametric
identification (D’Amour, 2019a,b)
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“The Deconfounder” does not
outperform naive regression
(Grimmer, 2020)



Methods of this type appear across science, and are
standard procedure (e.g., Price et al 2006 in GWAS).

Principal components analysis corrects for stratification in genome-wide

association studies

AL Price, NJ Patterson, RM Plenge, ME Weinblatt... - Nature ..., 2006 - nature.com
Population stratification—allele frequency differences between cases and controls due to
systematic ancestry differences—can cause spurious associations in disease studies. We
describe a method that enables explicit detection and correction of population stratification
on a genome-wide scale. Our method uses principal components analysis to explicitly
model ancestry differences between cases and controls. The resulting correction is specific
to a candidate marker's variation in frequency across ancestral populations, minimizing ...
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This talk

* Reconcile intuition and practical success with negative theoretical
results

* Flexible and interpretable sensitivity analysis for multi-treatment
inference

* Some theoretical insights about the what might be gained in multi-
treatment inference



The Role of Sensitivity Analysis

« Relax unverifiable identifying assumptions
« Readers can assess claims more precisely

« Unique challenges in the multiple treatment setting which
require careful consideration



Setup

e OutcomesY (scalar)
e« Treatments T (k-vector),
e« Confounders U (m-vector)

e Use the do-calculus framework (Pearl, 2009)

o do operator indicates the density of y in the population in which we

intervened to assign t
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PATE,, ,, := E(Y | do(t1)) — E(Y | do(ty))

for treatment vectors ¢; and t»



Observed and Intervention Densities

Observed: fly|t) = / oy (U | t,u) foy (ult)du

Intervention: (y | dO / fwy Y ‘ ¢ u)fwT( )

@D are sensitivity parameters

Note: ., (u)du = / For(u | B f@)dE



Copula Approach to Multi-Treatment Sensitivity

Fuly 1 do®) = 1 1) [ evr (Frutw), Fifu(u) | £) fuddu

o Cu(Fr(®); Frie(u) [ 1) s the conditional copula which
characterizes the dependence between Y and U given T.

o U might be identified (up to an equivalence class) with multiple
treatments (e.g. a latent factor model)

« Uy remains unidentified



Motivating Example: Analysis of Mouse Obesity

o Explore the effect of 17 gene expression values on mouse weight (Miao
et al 2020)

o Likely confounded due to batch effects and unmeasured phenotypes

e Gene expression are the “treatments” and weight is the outcome

o Model treatments and outcomes as Gaussian

o Correlation between expression levels (“treatments”) is indicative of
potential confounding



Building Intuition: The Linear Gaussian Model
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The Linear Gaussian Model

In this model:
o fu|t) ~ N(lylts o) I8 identifiable (up to scale / rotation)
’ _PAACZ—V_Etl,t2 — PATEAt — T,At
Biasa; = (7 — 7) At
Sensitivity analysis:
o Consider confounding bias of naive estimates as a function of 7/

o Bias varies across treatment contrasts, At



Worst-case bias of naive estimators

Theorem

Suppose that the observed data is generated by model 1-3 with aflu > 0. Then, Vv
satisfying Assumptions 1 and 2,

T 2
B Zu|tfy = Oyt (4)
For any given At, we have
. 2 2 ~1/2 2
Biasa; < Uy|tRY~U|T||):U|t/ Hulaellz  (bounded), (5)

The bound is achieved when ~ is colinear with z:,|1t,u'u|At-

The omitted variable bias is proportional to the
scaled difference in confounder means



Overall worst-case bias

Corollary

Let d; be the largest singular value of B. For all At with || At ||,= 1, the squared bias is

bounded by
2
d12 Ty|t 2

Ry .inT, 6
(d12+0'f zu Y~U|T ( )

.
Biash; <

W@

with equality when At = ur, the first left singular vector of B. When At € Null(B'), the
naive estimate is unbiased, that is, PATEa; = T, At.
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) is the fraction of variance in the first PC of treatments that can be explained

by confounding.



Confounding Bias

Change of Bias with At
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Robustness and Calibration

o Sensitivity analysis consists of two parts:
1. The sensitivity model parameterization

2. Tools for mapping external assumptions to specific models in the set

« Models parameterized by v = \/R%/NU|T2;|}5/2CZ

. . 2
o Default: choose d to maximize bias and reason about RYNU|T :



Robustness and Calibration

o The robustness value is the smallest value of R%f~U|T that negates the
sign of the treatment effect.

o If novalue can change the sign we declare the effect robust to this
confounding

. 2
e Can reason about by robustness by comparing RY~U|T to:
0 R%/NT , the observed fraction of variance explained by treatments

o R%/NT- T the partial fraction of variance explained by some, given others
J —J



Analysis of Mouse Obesity

o Explore the effect of 17 gene expression values on mouse weight (Miao
et al 2020)

o Likely confounded due to batch effects and unmeasured phenotypes

e Gene expression are the “treatments” and weight is the outcome

o Model treatments and outcomes as Gaussian

o Correlation between expression levels is indicative of potential
confounding
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naive

naive

Tmean le’mz’t R‘/lzmzt (%)
2010002N04Rik 11.74 3.63 kK
Vwi 10.69 3.87 oAH
Serpinab 7.52 2.79 16
Mest 5.88 0.78 1
Slc22a3 5.20 0.56 5
Earll 3.53 0.96 14
Ccnl2 -4.89  -0.76 99
Irx3 -5.11 -0.47 58
Ndrgl -6.38  -1.56 65
Igftbp2 -6.66  -2.59 31
Kdm4a -7.54  -0.57 1
Abca8a -8.01 -1.80 26
Gapdh -11.67  -4.56 Aorck
Fam105a -15.60 -6.69 57




Non-linear models

« Model: Y =g(T)+~'U + €ylt,u

« Model the outcome given treatments using Bayesian Additive Regression
Trees

e New estimand:

= [Y | do(tq)} — E[Y | do(t) = t;”]

where t] isthe treatment vector with all genes at their median level
except for the jth gene which has it’s level set to the g-th quantile.
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Additional Assumptions for Reducing Ignorance

e R-squared: what fraction of the outcome variance is due to
confounding?

e Null controls: specify which set of treatments are known to have no
causal impact on the outcome.

o Sparsity: the majority of treatments have no effect

o Miao et al (2020) propose an identification strategy based on the assumption
that at least half of the treatments have no effect ("null treatments”)

Natural to encode these assumptions with prior distributions in a
Bayesian framework
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Multi-cause sensitivity in general

Fuly 1 do(®) = £y 19) [ co (Frielw) i () |t) f(w)do

e (Fyie(v), Fu(u) [ t) is the conditional copula which
characterizes the dependence between Y and U given T.

o No information in the observed data about this copula

. Fy|t is the CDF of the naive outcome model

. FU|t is the CDF of U given T=t. Assumed identifiable from the
latent variable model.



Additional Assumptions

Asm4: Copula invariance

The conditional copula does not depend on the value of t, that is, the conditional dependence
between Y and U is invariant to the level of T.

Asmb5: Gaussian copula

The conditional copula between the outcome and m-dimensional latent confounders given
treatments, cy(Fy|:(y), Fy)¢(u) | t), is a Gaussian copula.




Multi-cause sensitivity in general

Implied Gaussian copula:

T ~ Fy

flu|t) ~ N(,Uu\ta Eu,|t) COV([Y UINT =t) =
Y = (U — uje) + €t L 7 B
Y = FyL(2(Y)) | )ty Zaft



Analysis of IMDB movie data

e Analysis of TMDB 5000 Move Dataset

o Estimate the effect of an actor’s presence on movie revenue (see Wang
and Blei, 2018)

e Regress log revenue of cast indicators

o Explicitly exclude observed covariates in order to validate the sensitivity
analysis.

o E.g. budget explains 30% of the variance in revenue
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Minimum Norm Effects

Y~UIT -

w0 %
w 10%

30%
w— 74%

L2 minimization of effects

—

- e - e e = e e e e e - e e e e e e e = == -

40 A

20 1

=

N ettt

=20 -

Actor |



Conclusions

o If you can identify the distribution of latent confounders given
treatments, you get bounded ignorance regions for the causal effects

o Sensitivity analysis allows us to relax strong identifying

o Explore robustness to different kinds of assumptions (R”*2, sparsity, null
controls, etc)

o Current work on encoding causal assumptions with Bayesian priors



Software and Future Directions

o Alternative latent variable models

o Interpretation and calibration is the challenge

o Bayesian inference for encoding (partially) uncheckable causal
assumptions.

e Multiple outcomes

o R package available at github.com/JiajingZ/CopSens



http://github.com/JiajingZ/CopSens

Thanks!

Alexander D’Amour |
Google Research |

Jiajing Zheng
UCSB

Reference: Jiajing Zheng, Alexander D’Amour and Alexander Franks,
Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference
with Unobserved Confounding. Arxiv: https://arxiv.org/abs/2102.09412

R package available at github.com/JiajingZ/CopSens



https://arxiv.org/abs/2102.09412
http://github.com/JiajingZ/CopSens
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Binary outcomes and/or binary treatments

o For binary outcomes, focus on the risk ratio:

RRy 1, =P(Y =1]|do(t1))/P(Y =1]do(t2))

e For non-Gaussian treatments we use variational autoencoder

o Neural network latent variable model where f(u | t) ~ N(:u'u,|t7 Zu|t)
holds approximately
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Observable Partial R-squareds for IMDB example

Partial R® for Observed Factors

30% -
20% -
% - —

1 1 1 I I | )
release_monthruntime release_year genre cast log_budget

Partial R?




