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Causal Inference From Observational Data
Consider a treatment  and outcome 

Interested in the population average treatment effect (PATE)
of  on :

T Y

T Y

E[Y|do(T = t)] − E[Y|do(T = )]t ′

In general, the PATE is not the same as

E[Y|T = t] − E[Y|T = ]t ′
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Confounders

Need to control for  to consistently estimate the causal effectU
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Confounding bias
Observed data regression of  on  fails because the
distribution of  varies in the two treatment arms

T Y
U

We try to condition on as many observed confounders as
possible to mitigate potential confounding bias

Commonly assumed that there are “no unobserved
confounders” (NUC) but this is unverifiable

Sensitivity analysis is a tool for assessing the impacts of
violations of this assumption
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A Motivating Example
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A Motivating Example
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The Effects of Light Alcohol Consumption
Observational data from the National Health and Nutrition
Examination Study (NHANES) on alcohol consumption.

Light alcohol consumption is positively correlated with
blood levels of HDL (“good cholesterol”)

Define “light alcohol consumption’’ as 1-2 alcoholic
beverages per day

Non-drinkers: self-reported drinking of one drink a week or
less

Control for age, gender and indicator for educational
attainment
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HDL and alcohol consumption
summary(lm(Y[, "HDL"] ~ drinking + X))1

Call:
lm(formula = Y[, "HDL"] ~ drinking + X)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.0855 -0.6127 -0.0512  0.6389  4.2383 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.225550   0.091105   2.476 0.013412 *  
drinking    0.597399   0.091917   6.499 1.11e-10 ***
Xage        0.006409   0.001452   4.415 1.09e-05 ***
Xgender     0.689557   0.049426  13.951  < 2e-16 ***
Xeduc       0.194338   0.051161   3.799 0.000152 ***

What must be true for this correlation to be non-causal?
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Blood mercury and alcohol consumption
summary(lm(Y[, "Methylmercury"] ~ drinking + X))1

Call:
lm(formula = Y[, "Methylmercury"] ~ drinking + X)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.3570 -0.7363 -0.0728  0.6242  4.1127 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.442044   0.096385   4.586 4.91e-06 ***
drinking     0.364096   0.097244   3.744 0.000188 ***
Xage         0.008186   0.001536   5.330 1.14e-07 ***
Xgender     -0.062664   0.052290  -1.198 0.230966    
Xeduc        0.269815   0.054126   4.985 6.95e-07 ***

But… no plausible causal mechanism in this case
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Residual Correlation
hdl_fit <- lm(Y[, "HDL"] ~ drinking + X)1
mercury_fit <- lm(Y[, "Methylmercury"] ~ drinking + X)2

3
cor.test(hdl_fit$residuals, mercury_fit$residuals)4

    Pearson's product-moment correlation

data:  hdl_fit$residuals and mercury_fit$residuals
t = 3.7569, df = 1437, p-value = 0.0001789
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.04718758 0.14953581
sample estimates:
      cor 
0.0986225 

Residual correlation might be indicative of confounding bias

11



Sensitivity Analysis
NUC unlikely to hold exactly. What then?

Calibrate assumptions about confounding to explore range
of causal effects that are plausible

Robustness: quantify how “strong” confounding has to be to
nullify causal effect estimates

Many methods for single outcome analyses.

See e.g. ( )Cinelli and Hazlett 2020
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Multi-outcome Sensitivity Analysis
If we measure multiple outcomes, is there prior knowledge
that we can leverage to strengthen causal conclusions?

What might residual correlation in multi-outcome models
mean for potential for confounding?

How do results change when we assume a priori that certain
outcomes cannot be affected by treatments?

Null control outcomes (e.g. alcohol consumption should
not increase mercury levels)
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A Structural Equation Model
 (m-vector) and  are possible causes for  (scalar) and 

(q-vector)

 are observed but  are not.

U X T Y

X U

U = ϵU
T = (X, U)fϵ
Y = g(T, X) + Γ U + ,Σ−1/2

u|t,x ϵy

This SEM is compatible with the observed data having factor
structured residuals, Cov(Y|T, X) = Γ + ΛΓ′
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A Sensitivity Specification
Propose a sensitivity parameterization governed by a single

-vector, , the partial correlation vector between  and 

Define  to be the squared norm of

the partial correlation between T and U given 

Confounding bias is a function of factor loadings, , and
sensitivity vector, 

m ρ T U

0 ≤ := < 1R2
T∼U|X

||ρ||22
σ2
t∣x

X
Γ

ρ
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Multi-outcome Assumptions
Multi-outcome assumptions:

All potential confounding is reflected in correlation among outcomes.

Factor loadings are identifiable (up to rotation) ( )

Assumption (Factor confounding)

Assumption (Factor identifiability)

Anderson and Rubin 1956
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Bounding the Omitted Variable Bias

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome  is bounded by

The bound on the bias for outcome  is proportional to the
norm of the factor loadings for that outcome

A single sensitivity parameter, , shared across all
outcomes

Theorem (Bounding the bias for outcome )Yj

Yj

≤ ( ) ∥Bias2j
( −t1 t2)2

σ2t∣x

R2T∼U|X

1 − R2T∼U|X
Γj∥ 22

j

R2
T∼U∣X
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Null Control Outcomes
Null control outcomes are outcomes which we assume are
not caused by the treatment

e.g. methylmercury in drinking example

Theory tells us how null control assumptions change the
sensitivity/robustness to additional unmeasured
confounding.
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The effects of light drinking
Measure ten different outcomes from blood samples:

natural: HDL, LDL, triglycerides, potassium, iron, sodium,
glucose

environmental toxicants: mercury, lead, cadmium.

Measured confounders: age, gender and indicator for
highest educational attainment

Residual correlation in the outcomes might be indicative of
additional confounding bias
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Results: NHANES alcohol study
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Takeaways
Prior knowledge unique to the multi-outcome setting can
help inform assumptions about confounding

Sharper sensitivity analysis, when assumptions hold

Negative control assumptions can potentially provide strong
evidence for or against robustness
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Comments
Slides: 

Sensitivity to Unobserved Confounding in Studies with Factor-
structured Outcomes, (JASA, 2023)

Identification with multiple treatments multiple outcomes

Collaboration on effects of pollutants on multiple heath
outcomes

Sensitivity analysis for more general models / forms of
dependence.
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Thanks!
Jiaxi Wu (top, UCSB)

Jiajing Zheng (middle,
formerly UCSB)

Alex D’Amour (bottom,
Google Research)
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A Sensitivity Specification
Interpretable specification for  and  parameterized by a single -vector, μu∣t,x Σu|t,x m ρ

μu∣t,x

Σu∣t,x

= (t − ) ,
ρ
σ2t∣x

μt∣x

= − ,Im
ρρ′

σ2t∣x
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