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e Please look at the paper for full set of assumptions and
technical details


file:///Users/afranks/Dropbox/course/Talks/2023/JSM/afranks.com/talks
https://arxiv.org/abs/2208.06552

Causal Inference From Observational Data

e Consider atreatment T and outcome Y

e Interested in the population average treatment effect (PATE)
of TonY:

E[Y |do(T = t)] = E[Y |do(T = t')]

e In general, the PATE is not the same as

E[Y|T =t] -E[Y|T =t’]



Confounders

(D—

Need to control for U to consistently estimate the causal effect



Confounding bias

e Observed data regression of T on Y fails because the
distribution of U varies in the two treatment arms

e We try to condition on as many observed confounders as
possible to mitigate potential confounding bias

e Commonly assumed that there are “no unobserved
confounders” (NUC) but this is unverifiable

e Sensitivity analysis is a tool for assessing the impacts of
violations of this assumption



A Motivating Example

HEALTH > NUTRITION & DIET

7 Science-Backed Health Benefits of
Drinking Red Wine

Yep, moderate red wine consumption is healthy—and here’s the proof.

By Ashley Zlatopolsky Updated on November 5, 2022

@ Fact checked by Emily Peterson




A Motivating Example

&he New Hork Eimes

Fven a Little Alcohol Can Harm
Your Health

Recent research makes it clear that any amount of drinking can

be detrimental. Here's why you may want to cut down on your
consumption beyond Dry January.



The Effects of Light Alcohol Consumption

Observational data from the National Health and Nutrition
Examination Study (NHANES) on alcohol consumption.

Light alcohol consumption is positively correlated with
blood levels of HDL (“good cholesterol”)

Define “light alcohol consumption” as 1-2 alcoholic
beverages per day

Non-drinkers: self-reported drinking of one drink a week or
less

Control for age, gender and indicator for educational
attainment



HDL and alcohol consumption

summary(lm(¥Y[, "HDL"] ~ drinking + X))

Call:
Im(formula = Y[, "HDL"] ~ drinking + X)

Residuals:
Min 10 Median 30 Max
-5.0855 -0.6127 -0.0512 0.6389 4.2383

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.225550 0.091105 2.476 0.013412 =

drinking 0.597399 0.091917 6.499 1.11e-10 ***
Xage 0.006409 0.001452 4.415 1.09e-05 ***
Xgender 0.689557 0.049426 13.951 < 2e-16 ***
Xeduc 0.194338 0.051161 3.799 0.000152 **=*

What must be true for this correlation to be non-causal?



Blood mercury and alcohol consumption

summary (lm(Y[,

Call:
Im(formula

Residuals:
Min

Y[,

10 Median
-2.3570 -0.7363 -0.0728

Coefficients:

(Intercept)
drinking
Xage
Xgender
Xeduc

But... no plausible causal mechanism in this case

Estimate Std.
0.
0.
0.
-0.
0.

442044
364096
008186
062664
269815

o O O O o

30

0.6242

Error t value
.096385
.097244
.001536
.052290
.054126

Max

4.1127

4.586
3.744
5.330
-1.198
4.985

"Methylmercury"] ~ drinking + X)

Pr(>|t]|)

oON O L O B

.91e-06
.000188
.14e-07
.230966
.95e-07

"Methylmercury"] ~ drinking + X))

* k%

* %%

* %%

* k%
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Residual Correlation

hdl fit <- Im(Y[, "HDL"] ~ drinking + X)
mercury fit <- 1Im(Y[, "Methylmercury"] ~ drinking + X)

cor.test(hdl fit$residuals, mercury fitSresiduals)

Pearson's product-moment correlation

data: hdl fit$residuals and mercury fit$residuals
t = 3.7569, df = 1437, p-value = 0.0001789
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.04718758 0.14953581
sample estimates:
cor
0.0986225

Residual correlation might be indicative of confounding bias
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Sensitivity Analysis

NUC unlikely to hold exactly. What then?

Calibrate assumptions about confounding to explore range
of causal effects that are plausible

Robustness: quantify how “strong” confounding has to be to
nullify causal effect estimates

Many methods for single outcome analyses.

See e.g. (Cinelli and Hazlett 2020)
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Multi-outcome Sensitivity Analysis

e |f we measure multiple outcomes, is there prior knowledge
that we can leverage to strengthen causal conclusions?

e What might residual correlation in multi-outcome models
mean for potential for confounding?

e How do results change when we assume a priori that certain
outcomes cannot be affected by treatments?

= Null control outcomes (e.g. alcohol consumption should
not increase mercury levels)
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A Structural Equation Model

e U (m-vector) and X are possible causes for T (scalar) and Y
(g-vector)

e X are observed but U are not.

U =€y
T — fe(X,U)
Y = g(T.X)+TZ, 2U +¢,

e This SEM is compatible with the observed data having factor
structured residuals, Cov(Y|T,X) =TT" + A
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A Sensitivity Specification

e Propose a sensitivity parameterization governed by a single
m-vector, Q, the partial correlation vector between T and U

e Define( < R2~U|X = I|@|I2 < 1 to be the squared norm of
0

tIx

the partial correlation between T and U given X

e Confounding bias is a function of factor loadings, I, and
sensitivity vector, Q
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Multi-outcome Assumptions

e Multi-outcome assumptions:

Assumption (Factor confounding)

All potential confounding is reflected in correlation among outcomes.

Assumption (Factor identifiability)

Factor loadings are identifiable (up to rotation) (Anderson and Rubin 1956)
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Bounding the Omitted Variable Bias

Theorem (Bounding the bias for outcome Y;)

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome Y; is bounded by

t — ty)? T
Bias? < (112 ( Rruix >||Fj||§

2 2
J O I =Ri_yix

tIx

e The bound on the bias for outcome j is proportional to the
norm of the factor loadings for that outcome

e Asingle sensitivity parameter, R%Nle, shared across all
outcomes
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Null Control Outcomes

e Null control outcomes are outcomes which we assume are
not caused by the treatment

= e.g. methylmercury in drinking example

e Theory tells us how null control assumptions change the
sensitivity/robustness to additional unmeasured
confounding.
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The effects of light drinking

e Measure ten different outcomes from blood samples:

= natural: HDL, LDL, triglycerides, potassium, iron, sodium,
glucose

= environmental toxicants: mercury, lead, cadmium.

e Measured confounders: age, gender and indicator for
highest educational attainment

e Residual correlation in the outcomes might be indicative of
additional confounding bias
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Results: NHANES alcohol study

Methylmercury
HDL

LDL
Potassium
Glucose

Iron
Triglycerides
Lead
Cadmium

Sodium
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Takeaways

e Prior knowledge unique to the multi-outcome setting can
help inform assumptions about confounding

e Sharper sensitivity analysis, when assumptions holc

e Negative control assumptions can potentially provide strong
evidence for or against robustness
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Comments

e Slides: afranks.com/talks

e Sensitivity to Unobserved Confounding in Studies with Factor-
structured Outcomes, (JASA, 2023)
https://arxiv.org/abs/2208.06552

e |dentification with multiple treatments multiple outcomes

= Collaboration on effects of pollutants on multiple heath
outcomes

e Sensitivity analysis for more general models / forms of
dependence.
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Thanks!

e Jiaxi Wu (top, UCSB)
e Jiajing Zheng (middle,
formerly UCSB)

o Alex D’Amour (bottom,
Google Research)
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A Sensitivity Specification

e Interpretable specification for W, x and 2, ;x parameterized by a single m-vector, Q

0
X — T 5 t— X/ o
“mt’ O-t%x< a )
/
Zult,x Im - i—ga
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