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Causal Inference From Observational Data

e Consider atreatment I’ and outcome Y

e Interested in the population average treatment effect (PATE)
of I'onY:

E[Y|do(T =t)] — E[Y|do(T = t')]

e |n general, the PATE is not the same as

E[Y|T =t - E[Y|T =t



Confounders

(D—

Need to control for U to consistently estimate the causal effect



Confounding bias

e Observed data regression of T'on Y fails because the
distribution of U varies in the two treatment arms

e We try to condition on as many observed confounders as
possible to mitigate potential confounding bias

e Commonly assumed that there are “no unobserved
confounders” (NUC) but this is unverifiable

e Sensitivity analysis is a tool for assessing the impacts of
violations of this assumption



A Motivating Example

HEALTH > NUTRITION & DIET

7 Science-Backed Health Benefits of
Drinking Red Wine

Yep, moderate red wine consumption is healthy—and here’s the proof.

By Ashley Zlatopolsky Updated on November 5, 2022

@ Fact checked by Emily Peterson




A Motivating Example

&he New Hork Eimes

Fven a Little Alcohol Can Harm
Your Health

Recent research makes it clear that any amount of drinking can

be detrimental. Here's why you may want to cut down on your
consumption beyond Dry January.



The Effects of Light Alcohol Consumption

Observational data from the National Health and Nutrition
Examination Study (NHANES) on alcohol consumption.

Light alcohol consumption is positively correlated with
blood levels of HDL (“good cholesterol”)

Define “light alcohol consumption” as 1-2 alcoholic
beverages per day

Non-drinkers: self-reported drinking of one drink a week or
less

Control for age, gender and indicator for educational
attainment



HDL and alcohol consumption

summary(lm(¥Y[, "HDL"] ~ drinking + X))

Call:
Im(formula = Y[, "HDL"] ~ drinking + X)

Residuals:
Min 10 Median 30 Max
-5.0855 -0.6127 -0.0512 0.6389 4.2383

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.225550 0.091105 2.476 0.013412 =

drinking 0.597399 0.091917 6.499 1.11e-10 ***
Xage 0.006409 0.001452 4.415 1.09e-05 ***
Xgender 0.689557 0.049426 13.951 < 2e-16 ***
Xeduc 0.194338 0.051161 3.799 0.000152 **=*

What must be true for this correlation to be non-causal?



Blood mercury and alcohol consumption

summary (lm(Y[,

Call:
Im(formula

Residuals:
Min

Y[,

10 Median
-2.3570 -0.7363 -0.0728

Coefficients:

(Intercept)
drinking
Xage
Xgender
Xeduc

But... no plausible causal mechanism in this case

Estimate Std.
0.
0.
0.
-0.
0.

442044
364096
008186
062664
269815

o O O O o

30

0.6242

Error t value
.096385
.097244
.001536
.052290
.054126

Max

4.1127

4.586
3.744
5.330
-1.198
4.985

"Methylmercury"] ~ drinking + X)

Pr(>|t]|)

oON O L O B

.91e-06
.000188
.14e-07
.230966
.95e-07

"Methylmercury"] ~ drinking + X))

* k%

* %%

* %%

* k%
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Residual Correlation

hdl fit <- Im(Y[, "HDL"] ~ drinking + X)
mercury fit <- 1Im(Y[, "Methylmercury"] ~ drinking + X)

cor.test(hdl fit$residuals, mercury fitSresiduals)

Pearson's product-moment correlation

data: hdl fit$residuals and mercury fit$residuals
t = 3.7569, df = 1437, p-value = 0.0001789
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.04718758 0.14953581
sample estimates:
cor
0.0986225

Residual correlation might be indicative of confounding bias
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Sensitivity Analysis

NUC unlikely to hold exactly. What then?

Calibrate assumptions about confounding to explore range
of causal effects that are plausible

Robustness: quantify how “strong” confounding has to be to
nullify causal effect estimates

Well established methods for single outcome analyses
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Multi-outcome Sensitivity Analysis

e |f we measure multiple outcomes, is there prior knowledge
that we can leverage to strengthen causal conclusions?

e What might residual correlation in multi-outcome models
mean for potential for confounding?

e How do results change when we assume a priori that certain
outcomes cannot be affected by treatments?

= Null control outcomes (e.g. alcohol consumption should
not increase mercury levels)
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Standard Assumptions

Assumption (Latent Ignorability)

U and X block all backdoor paths between T and Y (Pearl 2009)

Assumption (Latent positivity)

f(T=t|U=u,X=x)>0foralluandx

Assumption (SUTVA)

There are no hidden versions of the treatment and there is no interference between
units
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Single-outcome Sensitivity Analysis

Result (Cinelli and Hazlett 2020)

Assume the outcome is linear in the treatment and confounders (no interactions). Then
the squared omitted variable bias for the PATE is

2 R?
. (t1 —t2) T~U|X 5
Bias; ;, < 5 < - )RYNUT,X

0t|x
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Single-outcome Sensitivity Analysis

Result (Cinelli and Hazlett 2020)

Assume the outcome is linear in the treatment and confounders (no interactions). Then
the squared omitted variable bias for the PATE is

2 R?
. (t1 —t2) T~U|X 5
Bias; ;, < 5 ( - )RYNUT,X

0t|:c

° R%NU’X: partial fraction of treatment variance explained by
confounders (given observed covariates)
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Single-outcome Sensitivity Analysis

Result (Cinelli and Hazlett 2020)

Assume the outcome is linear in the treatment and confounders (no interactions). Then
the squared omitted variable bias for the PATE is

2 R?
. (t1 —t2) T~U|X 5
Bias; ;, < 5 < - )RYNUT,X

0t|x
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Robustness

e How big do R?
effect?

T~U|X

e RV! smallest value of R?

and R?

T~U|X —

Y~U|T,X

need to be to nullify the

— R?

Y~U|T,X needed to

nullify effect (Cinelli and Hazlett 2020)

e X RV smallestvalue ofRT U|X assuming R?

Y~U|T,X — =1

needed to nullify effect (Cinelli and Hazlett 2022)
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Calibrating Sensitivity Parameters

e What values of R? and R2

reasonable?

might be

Y~U|T, X T~U|X

e Can use observed covariates to generate benchmark values:

= Compute R? for all covariate X;

T~X;|X_;

= Compute R? for all covariate X ;

Y~X,|X_;,T

e Use domain knowledge to reason about most important
confounders
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Sensitivity of HDL Cholesterol Effect

<
o

r(s) with the outcome

0.2

Partial R? of confounde
01

0.0
I

0.0 0.1 0.2 0.3 0.4

Partial R? of confounder(s) with the treatment

From the sensemakr documentation (Cinelli, Ferwerda, and
Hazlett 2020)
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Models with factor-structured
residuals

Assume the observed data mean and covariance can be
expressed as follows:

EY |T=tX=z|=g(t,x)
Cov(Y |T=t,X=2z)=TT"+ A,

e I" are factor loading matrices, A is diagonal



A Structural Equation Model

e U (m-vector) and X are possible causes for T (scalar) and Y
(g-vector)

e X are observed but U are not.

U=¢€y
T = f.(X,U)

Y = ¢(T, X) +Tx /2

ult,r

U + €y,

e This SEM is compatible the factor structured residuals,
Cov(Y|T,X) =TT + A
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A Structural Equation Model

U =€y
T = f.(X,U)
Y =g(T,X) + I3,/ 7U +e,

e Confounding biasis I‘E;ﬁfuuyt,x

® [yt and 21, . are the conditional mean and covariance of
the unmeasured confounders

= User specified sensitivity parameters



A Sensitivity Specification

* Interpretable specification for p; , and Eu‘t,m parameterized by a single m-vector, p:

i
Hult,e = 5 (t - /~Lt|m)7
atlx
/
pp
Zu\t,x = I, — )

2
0t|x

e pisthe partial correlation vector between T and U

2
e Define( < Rizl“NU\X = |(|f2||2 < 1 to be the squared norm of the partial correlation
t|z

between T and U given X
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Multi-Outcome Assumptions

Assumption (Homoscedasticity)

Cov(Y|T = t, X = x)isinvariant to t and x. Implies factor loadings, I, are invariant
totandx

Assumption (Factor confounding)

The factor loadings, I, are identifiable (up to rotation) and reflect all potential
confounders. (Anderson and Rubin 1956)

To identify factor loadings, I', (g — m)? — ¢ — m > 0 and
each confounder must influence at least three outcomes
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Bounding the Omitted Variable Bias

Theorem (Bounding the bias for outcome Y)

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome Y; is bounded by

t, —t,)2 [ Ra_
Bias? < (1 2) < o ) H I‘j Hg

jo= 2 D2
Otz 1 =Ry _pix

e The bound on the bias for outcome 7 is proportional to the
norm of the factor loadings for that outcome

2

T~U|X’ shared across all

e Asingle sensitivity parameter, R

outcomes
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Bounding the Omitted Variable Bias

Theorem (Bounding the bias for outcome Y)

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome Y is bounded by

t, —t,)2 [ R
Bias? < (1 2) (1T Ui )Fj H%

J — 2
Jt|w

e The bound on the bias for outcome 7 is proportional to the
norm of the factor loadings for that outcome

2

T~U|X’ shared across all

e Asingle sensitivity parameter, R

outcomes
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Bounding the Omitted Variable Bias

Theorem (Bounding the bias for outcome Y)

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome Y; is bounded by

t, —t,)2 [ R
Bias? < (1 2) ( U > H I‘j Hg

jo= 2 P2
Otz 1 =Ry _pix

e The bound on the bias for outcome 7 is proportional to the
norm of the factor loadings for that outcome

2

T~U|X’ shared across all

e Asingle sensitivity parameter, R

outcomes
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2

T~U|X for binary

Reparametrizing R

treatments
. R%NU‘X is unnatural for binary treatments

. . 2 . .
e A-parameterization < RTNU‘X—parameterlzatlon

Fix a A, such that

X,U)/(1 - eo(X,U))
e(X)/(1 — e(X))

Pr(Aalg o §Aa):1—a

e Related to the marginal sensitivity model (Tan 2006)
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Null Control Outcomes

e Assume we have null control outcomes, C
e 7 are the vector of PATEs under NUC

e I'c are the factor loadings for the null control outcomes, C

e Need at least Rczer\X > R? . of the treatment variance to

be due to confounding to nullify the null controls
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Null Control Outcomes

Theorem (Bias with Null Control Outcomes)

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome Y; is bounded by

2
1 RTNU\X R.,
Bias; € |I,Thic + || T3P |12 4| — ( s 1_m )|




Null Control Outcomes

Bias j €

Theorem (Bias with Null Control Outcomes)

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome Y’; is bounded by

2
1 BT v1x R.,
TThe + || TP, 12 4| = ( 5 ——
¢ \ oj, \1- Ry ,x 1-R2,

o [ I‘E'fc is a (partial) bias correction for outcome 7

|
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Null Control Outcomes

Theorem (Bias with Null Control Outcomes)

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome Y’; is bounded by

I 2
. . 1 RTNU\X R72m,n
BlaSj - FjFETC + || F]PIJE ||2 \ 0_2| (1 B R2 | _ 1 — R2 | ’
tlz T~U|X min
2 P2 .. .
o IfRTNU‘X = R . then the bias is identified for all

outcomes



Null Control Outcomes

Theorem (Bias with Null Control Outcomes)

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome Y; is bounded by

i 2
1 RT~U|X R.,
Bias; € |T;Thic + | TP [|2y| — ( > 1_m ||

e Ignorance about the bias is smallest when I'; is close to the
span of I'¢, that is, when || T'; P [|2 is small



Robustness under Factor
Confounding

o RVJ-F smallest value of szer\X needed to nullify the effect

for outcome 7 under factor confounding

o RV}-F can be smaller or larger than RV'!

° RVjF > X RV by definition

s RVENC smallest value of R? needed to nullify the

T~U|X
effect for outcome 7 and the assumed null controls
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Simulation Study

Gaussian data generating process

1T = ﬂ,U + €T
Y;=7T+T'S,°U+e,
R?FNU‘X — 0.9 from m = 2 unmeasured confounders

7; = 0for Y7, Y5 and Yy

T; = 1 for all outher outcomes
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Simulation Study

Fit a Bayesian linear regression on the 10 outcomes given
then treatment

Assume a residual covariance with a rank-two factor
structure

Plot ignorance regions assuming R?FNU < 0.5

Plot ignorance regions assuming R?FNU < 0.5 and Y7 is null
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Simulation Study

I . . . 2
Posterior Credible Regions ( R7_, = 50%)
1 0.5 0
3 TRvV' 029 038 004 049 037 030 047 043 041 0.16
2 0 XRvV 011 019 000 032 0.18 0.11 030 0.25 0.22 0.03
Rv! 034 039 000 067 041 0.21 0.67 052 0.41 0.06
3 0 - Ryl . 000 o010 059 041 022 044 051 050 044  0.02
8 24 c=1 0.34 0.44 0.93 0.75 0.56 0.48 0.85 0.84 0.78 0.36
4 o |-05 Value =
L
5 0 'E 1 B TT°WCTTWN T D -
() == QOriginal
6 0 S m Y, isnull
5 0+---- e et EEEEEEEE Rt SRR e G B
7 1 0.33 | 0.33 9
|_
8 044 044 1
9
T T T T T T T T T T
10 1 2 3 4 5 6 7 8 9 10

Outcome



The effects of light drinking

e Measure ten different outcomes from blood samples:

= natural: HDL, LDL, triglycerides, potassium, iron, sodium,
glucose

= environmental toxicants: mercury, lead, cadmium.

e Measured confounders: age, gender and indicator for
highest educational attainment

e Residual correlation in the outcomes might be indicative of
additional confounding bias
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The effects of light drinking

Model:

Y ~N((T+ o' X, TT + A)

~1/2¢;

ult

« ElY|IT,X, U =T+ o'X +T'S

e Residuals are approximately Gaussian

e Fit a multivariate Bayesian linear regression with factor structured residuals on all

outcomes
e Need to choose rank of I', we use PSIS-LOO (vehtari2017practical?)

e Consider posterior distribution of 7 under different assumptions about R

null controls

2
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Benchmark Values

e Use age, gender and an indicator of educational attainment
to benchmark

° % < Odds(X)/0dds(X _z4e) < 3.5 for 95% of

observed values

e For gender and education indicators the odds change was
1

between iE and 1.5

e Assume light drinking has no effect on methylmercury levels
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Results: NHANES alcohol study

Methylmercury
HDL

LDL
Potassium
Glucose

Iron
Triglycerides
Lead
Cadmium

Sodium

-0.09

0.01

0.17

-0.26

-0.16

-0.16

0.17

0.43

-0.07

0.07

0.33

-0.13

0.18

0.27

-0.11

-0.08

-0.18

-0.37

0.21

-0.09

-0.17

-0.23

-0.45

-0.16

-0.26

Value

0.4
0.0
-0.4

M o8

Treatment Effect

Factor Confounding

24 RV' 22.2 5.6 1.3 X X X X X X 3.8
XRV 2.5 14 1.8 X X X X X X 1.2
RV! 3.5 4.2 2.5 X X X X X X 1.5
RVic X X X X 28/115 X X X X X

| @

||
OT------ it | ety ail b Bl At | ittt | iattialty l--—— -

-1+ T T T T T T T T T T

v N v 2

¥ «0\\’6 N \© (oé\\}é\ N N o&\) & \)006

2
\(QQ) o\{b' O(b'b 2 \\\0 CQ\
& ¢ <9

\

= NUC
[] Aoces=3.5
= Aoe5=Amin
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Takeaways

e Prior knowledge unique to the multi-outcome setting can
help inform assumptions about confounding

e Sharper sensitivity analysis, when assumptions holc

e Negative control assumptions can potentially provide strong
evidence for or against robustness

43



Future directions

e |dentification with multiple treatments multiple outcomes

= Collaboration on effects of pollutants on multiple heath
outcomes

e Sensitivity analysis for more general models / forms of
dependence.
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e Jiaxi Wu (top, UCSB)
e Jiajing Zheng (middle,
formerly UCSB)

o Alex D’Amour (bottom,
Google Research)

Sensitivity to Unobserved
Confounding in Studies with
Factor-structured Outcomes
https://arxiv.org/abs/2208.06552
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