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Causal Inference From Observational Data
Consider a treatment  and outcome 

Interested in the population average treatment effect (PATE)
of  on :

T Y

T Y

E[Y |do(T = t)] − E[Y |do(T = t′)]

In general, the PATE is not the same as

E[Y |T = t] − E[Y |T = t′]
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Confounders

Need to control for  to consistently estimate the causal effectU
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Confounding bias
Observed data regression of  on  fails because the
distribution of  varies in the two treatment arms

T Y

U

We try to condition on as many observed confounders as
possible to mitigate potential confounding bias

Commonly assumed that there are “no unobserved
confounders” (NUC) but this is unverifiable

Sensitivity analysis is a tool for assessing the impacts of
violations of this assumption
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A Motivating Example
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A Motivating Example

7



The Effects of Light Alcohol Consumption
Observational data from the National Health and Nutrition
Examination Study (NHANES) on alcohol consumption.

Light alcohol consumption is positively correlated with
blood levels of HDL (“good cholesterol”)

Define “light alcohol consumption’’ as 1-2 alcoholic
beverages per day

Non-drinkers: self-reported drinking of one drink a week or
less

Control for age, gender and indicator for educational
attainment
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HDL and alcohol consumption
summary(lm(Y[, "HDL"] ~ drinking + X))1

Call:
lm(formula = Y[, "HDL"] ~ drinking + X)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.0855 -0.6127 -0.0512  0.6389  4.2383 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.225550   0.091105   2.476 0.013412 *  
drinking    0.597399   0.091917   6.499 1.11e-10 ***
Xage        0.006409   0.001452   4.415 1.09e-05 ***
Xgender     0.689557   0.049426  13.951  < 2e-16 ***
Xeduc       0.194338   0.051161   3.799 0.000152 ***

What must be true for this correlation to be non-causal?
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Blood mercury and alcohol consumption
summary(lm(Y[, "Methylmercury"] ~ drinking + X))1

Call:
lm(formula = Y[, "Methylmercury"] ~ drinking + X)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.3570 -0.7363 -0.0728  0.6242  4.1127 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.442044   0.096385   4.586 4.91e-06 ***
drinking     0.364096   0.097244   3.744 0.000188 ***
Xage         0.008186   0.001536   5.330 1.14e-07 ***
Xgender     -0.062664   0.052290  -1.198 0.230966    
Xeduc        0.269815   0.054126   4.985 6.95e-07 ***

But… no plausible causal mechanism in this case
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Residual Correlation
hdl_fit <- lm(Y[, "HDL"] ~ drinking + X)1
mercury_fit <- lm(Y[, "Methylmercury"] ~ drinking + X)2

3
cor.test(hdl_fit$residuals, mercury_fit$residuals)4

    Pearson's product-moment correlation

data:  hdl_fit$residuals and mercury_fit$residuals
t = 3.7569, df = 1437, p-value = 0.0001789
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.04718758 0.14953581
sample estimates:
      cor 
0.0986225 

Residual correlation might be indicative of confounding bias
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Sensitivity Analysis
NUC unlikely to hold exactly. What then?

Calibrate assumptions about confounding to explore range
of causal effects that are plausible

Robustness: quantify how “strong” confounding has to be to
nullify causal effect estimates

Well established methods for single outcome analyses
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Multi-outcome Sensitivity Analysis
If we measure multiple outcomes, is there prior knowledge
that we can leverage to strengthen causal conclusions?

What might residual correlation in multi-outcome models
mean for potential for confounding?

How do results change when we assume a priori that certain
outcomes cannot be affected by treatments?

Null control outcomes (e.g. alcohol consumption should
not increase mercury levels)
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Standard Assumptions

U and X block all backdoor paths between T and Y ( )

f(T = t | U = u, X = x) > 0 for all u and x

There are no hidden versions of the treatment and there is no interference between
units

Assumption (Latent Ignorability)

Pearl 2009

Assumption (Latent positivity)

Assumption (SUTVA)
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Single-outcome Sensitivity Analysis

Assume the outcome is linear in the treatment and confounders (no interactions). Then
the squared omitted variable bias for the PATE is

Result ( )Cinelli and Hazlett 2020

Bias2
t1,t2

≤
(t1 − t2)2

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

)R2
Y∼U |T ,X
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Single-outcome Sensitivity Analysis

Assume the outcome is linear in the treatment and confounders (no interactions). Then
the squared omitted variable bias for the PATE is

: partial fraction of treatment variance explained by
confounders (given observed covariates)

Result ( )Cinelli and Hazlett 2020

Bias2
t1,t2

≤
(t1 − t2)2

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

)R2
Y∼U |T ,X

R2
T∼U |X
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Single-outcome Sensitivity Analysis

Assume the outcome is linear in the treatment and confounders (no interactions). Then
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Bias2
t1,t2
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σ2
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R2
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1 − R2
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Robustness
How big do  and  need to be to nullify the
effect?

R2
T∼U |X R2

Y∼U |T ,X

 smallest value of  needed to
nullify effect ( )
RV 1 R2

T∼U |X = R2
Y∼U |T ,X

Cinelli and Hazlett 2020

 smallest value of  assuming 
needed to nullify effect ( )
XRV R2

T∼U |X R2
Y∼U |T ,X = 1

Cinelli and Hazlett 2022
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Calibrating Sensitivity Parameters
What values of  and  might be
reasonable?

Can use observed covariates to generate benchmark values:

Compute  for all covariate 

Compute  for all covariate 

Use domain knowledge to reason about most important
confounders

R2
Y∼U |T ,X R2

T∼U |X

R2
T∼Xj|X−j

Xj

R2
Y∼Xj|X−j,T

Xj
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Sensitivity of HDL Cholesterol Effect

From the sensemakr documentation (
)

Cinelli, Ferwerda, and
Hazlett 2020
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Models with factor-structured
residuals

Assume the observed data mean and covariance can be
expressed as follows:

 are factor loading matrices,  is diagonal

E[Y ∣ T = t,X = x] = ǧ(t,x)

Cov(Y ∣ T = t,X = x) = ΓΓ′ + Λ,

Γ Λ
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A Structural Equation Model
 (m-vector) and  are possible causes for  (scalar) and 

(q-vector)

 are observed but  are not.

U X T Y

X U

U = ϵU

T = fϵ(X,U)

Y = g(T ,X) + ΓΣ
−1/2
u|t,xU + ϵy,

This SEM is compatible the factor structured residuals,
Cov(Y |T ,X) = ΓΓ′ + Λ
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A Structural Equation Model

Confounding bias is 

 and  are the conditional mean and covariance of
the unmeasured confounders

User specified sensitivity parameters

U = ϵU

T = fϵ(X,U)

Y = g(T ,X) + ΓΣ
−1/2
u|t,xU + ϵy

ΓΣ
−1/2
u|t,x μu∣t,x

μu∣t,x Σu|t,x
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A Sensitivity Specification
Interpretable specification for  and  parameterized by a single -vector, :

 is the partial correlation vector between  and 

Define  to be the squared norm of the partial correlation

between T and U given 

μu∣t,x Σu|t,x m ρ

μu∣t,x =
ρ

σ2
t∣x

(t − μt∣x),

Σu∣t,x = Im −
ρρ′

σ2
t∣x

,

ρ T U

0 ≤ R2
T∼U |X :=

||ρ||2
2

σ2
t∣x

< 1

X
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Multi-Outcome Assumptions

 is invariant to t and x. Implies factor loadings, , are invariant
to  and 

Assumption (Homoscedasticity)

Cov(Y |T = t,X = x) Γ
t x

The factor loadings, , are identifiable (up to rotation) and reflect all potential
confounders. ( )

To identify factor loadings, ,  and
each confounder must influence at least three outcomes

Assumption (Factor confounding)

Γ
Anderson and Rubin 1956

Γ (q − m)2 − q − m ≥ 0

25



Bounding the Omitted Variable Bias

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome  is bounded by

The bound on the bias for outcome  is proportional to the
norm of the factor loadings for that outcome

A single sensitivity parameter, , shared across all
outcomes

Theorem (Bounding the bias for outcome )Yj

Yj

Bias2
j ≤

(t1 − t2)2

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

) ∥ Γj ∥2
2

j

R2
T∼U ∣X
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Bounding the Omitted Variable Bias

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome  is bounded by

The bound on the bias for outcome  is proportional to the
norm of the factor loadings for that outcome

A single sensitivity parameter, , shared across all
outcomes

Theorem (Bounding the bias for outcome )Yj

Yj

Bias2
j ≤

(t1 − t2)2

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

)∥ Γj ∥2
2

j

R2
T∼U ∣X
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Bounding the Omitted Variable Bias

Given the structural equation model, sensitivity specification and given assumptions,
the squared omitted variable bias for the PATE of outcome  is bounded by

The bound on the bias for outcome  is proportional to the
norm of the factor loadings for that outcome

A single sensitivity parameter, , shared across all
outcomes

Theorem (Bounding the bias for outcome )Yj

Yj

Bias2
j ≤

(t1 − t2)2

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

) ∥ Γj ∥2
2

j

R2
T∼U ∣X
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Reparametrizing  for binary
treatments

 is unnatural for binary treatments

-parameterization  -parameterization

R2
T∼U |X

R2
T∼U |X

Λ ↔R2
T∼U |X

Fix a  such that

Related to the marginal sensitivity model ( )

Λα

Pr(Λ−1
α ≤

e0(X,U)/(1 − e0(X,U))

e(X)/(1 − e(X))
≤ Λα) = 1 − α

Tan 2006
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Null Control Outcomes
Assume we have null control outcomes, 

 are the vector of PATEs under NUC

 are the factor loadings for the null control outcomes, 

C

τ̌

ΓC C

Need at least  of the treatment variance to
be due to confounding to nullify the null controls

R2
T∼U ∣X ≥ R2

min
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Null Control Outcomes

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome  is bounded by

Theorem (Bias with Null Control Outcomes)

Yj

Biasj ∈ ΓjΓ
†
C
τ̌C ± ∥ ΓjP

⊥
ΓC

∥2
1

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

−
R2

min

1 − R2
min

) ,
⎡⎢⎣ ⎷ ⎤⎥⎦ 31



Null Control Outcomes

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome  is bounded by

 is a (partial) bias correction for outcome 

Theorem (Bias with Null Control Outcomes)

Yj

Biasj ∈ ΓjΓ
†
C
τ̌C ± ∥ ΓjP

⊥
ΓC

∥2
1

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

−
R2

min

1 − R2
min

) ,
⎡⎢⎣ ⎷ ⎤⎥⎦ΓjΓ

†
C
τ̌C j
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Null Control Outcomes

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome  is bounded by

If  then the bias is identified for all
outcomes

Theorem (Bias with Null Control Outcomes)

Yj

Biasj ∈ ΓjΓ
†
C
τ̌C ± ∥ ΓjP

⊥
ΓC

∥2
1

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

−
R2

min

1 − R2
min

) ,
⎡⎢⎣ ⎷ ⎤⎥⎦R2

T∼U |X = R2
min
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Null Control Outcomes

Assume the previous structural equation model and sensitivity specification. Then the
squared omitted variable bias for the PATE of outcome  is bounded by

Ignorance about the bias is smallest when  is close to the
span of , that is, when  is small

Theorem (Bias with Null Control Outcomes)

Yj

Biasj ∈ ΓjΓ
†
C
τ̌C ± ∥ ΓjP

⊥
ΓC

∥2
1

σ2
t∣x

(
R2

T∼U |X

1 − R2
T∼U |X

−
R2

min

1 − R2
min

) ,
⎡⎢⎣ ⎷ ⎤⎥⎦Γj

ΓC ∥ ΓjP
⊥
ΓC

∥2
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Robustness under Factor
Confounding

 smallest value of  needed to nullify the effect
for outcome  under factor confounding
RV Γ

j R2
T∼U |X

j

 can be smaller or larger than 

 by definition

RV Γ
j RV 1

RV Γ
j ≥ XRV

 smallest value of  needed to nullify the
effect for outcome  and the assumed null controls
RV Γ

j,NC R2
T∼U |X

j
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Simulation Study
Gaussian data generating process

 from  unmeasured confounders

 for ,  and 

 for all outher outcomes

T = β′U + ϵT

Yj = τjT + Γ′Σ−1/2
u|t U + ϵy

R2
T∼U ∣X = 0.5 m = 2

τj = 0 Y1 Y2 Y10

τj = 1
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Simulation Study
Fit a Bayesian linear regression on the 10 outcomes given
then treatment

Assume a residual covariance with a rank-two factor
structure

Plot ignorance regions assuming 

Plot ignorance regions assuming  and  is null

R2
T∼U ≤ 0.5

R2
T∼U ≤ 0.5 Y1
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Simulation Study
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The effects of light drinking
Measure ten different outcomes from blood samples:

natural: HDL, LDL, triglycerides, potassium, iron, sodium,
glucose

environmental toxicants: mercury, lead, cadmium.

Measured confounders: age, gender and indicator for
highest educational attainment

Residual correlation in the outcomes might be indicative of
additional confounding bias
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The effects of light drinking
Model:

Y ∼ N(τT + α′X, ΓΓ′ + Λ)

Residuals are approximately Gaussian

Fit a multivariate Bayesian linear regression with factor structured residuals on all
outcomes

E[Y |T ,X,U ] = τT + α′X + Γ′Σ−1/2
u|t U

Need to choose rank of , we use PSIS-LOO ( )Γ vehtari2017practical?

Consider posterior distribution of  under different assumptions about  and
null controls

τ R2
T∼U |X
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Benchmark Values
Use age, gender and an indicator of educational attainment
to benchmark

 for 95% of
observed values

For gender and education indicators the odds change was
between  and 

Assume light drinking has no effect on methylmercury levels

1
3.5 ≤ Odds(X)/Odds(X−age) ≤ 3.5

1
1.5 1.5
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Results: NHANES alcohol study
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Takeaways
Prior knowledge unique to the multi-outcome setting can
help inform assumptions about confounding

Sharper sensitivity analysis, when assumptions hold

Negative control assumptions can potentially provide strong
evidence for or against robustness
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Future directions
Identification with multiple treatments multiple outcomes

Collaboration on effects of pollutants on multiple heath
outcomes

Sensitivity analysis for more general models / forms of
dependence.
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